
Direct Payment (Sadad)

This feature is for the advanced merchants and developers who wants to

customize the checkout UI or wants to collect the card details on their

interface and send it to Sadad. There are two ways to implement the direct

payment method:

A. Using JS SDK and checkout form

1. On your checkout form, place the code below:

<script>

 var sadadGetChecksum = function(){

 $.ajax({

 type: "POST",

 url: ‘checksumgenerate', //replace with

your URL

 data: $('#orderForm').serialize(), // Order

data you want to save to your website. Don't send card data.

 success: function (response) {

 afterChecksumSubmit(response);

 },

 error: function (err) {

 afterChecksumSubmit(err.statusText);

 }

 });

 };

 </script>

<div id="sadad_cc_container" data-i-color="#531232" data-

cbfunc="sadadGetChecksum"></div>

<script src="https://sadadqa.com/jslib/sadad1.js"></script>

2. Replace checksumgenerate with your server side script url that will

generate the checksumhash for the order data. Refer to the

checksum_form.html file mentioned in the zip package on what the

server side script should return as the result. The form id must be

“sadadFinalForm”.

3. Generate the checksumhash using sadad.php file as a reference. Replace

the data with your merchant account and order specific values.

4. If your server is not in the PHP, you can use the checksum APIs to

generate the checksumhash. The document to follow is Checksum

APIs_final.pdf

Customization options:

- You can specify your own function instead of sadadGetChecksum as

“data-cbfunc” attribute. Make sure it returns the form like

checksum_form.html

- You can enter any valid color code for data-i-color attribute.

- You can define your custom css to customize button style, radio buttons

style, input styles fonts etc.

- If you want to display Arabic labels and error messages you can use

“data-sd-lang” attribute. Valid values for this attribute are “ARB” and

“ENG”. Default is “ENG”

B. Using direct APIs

1. The merchant will design and develop his own interface and will

collect the payment method and card details (in case of credit card)

in his application UI.

2. The merchant will generate the checksum with the form data he’s

sending (without payment data like payment method, credit card

details etc.). The card details should never be sent to merchant’s

server and should not be stored anywhere within the merchant’s

server/application.

3. Merchant will append the payment data including payment method

and credit card (if payment method is credit card) and call the API

with following details:

URL: https://sadadqa.com/jslib/callapi.php

Method: POST

Content-Type: application/x-www-form-urlencoded4

Data:
merchant_id=1234567&

ORDER_ID=9006&

https://sadadqa.com/jslib/callapi.php

WEBSITE=sadad.qa&

TXN_AMOUNT=50.00&

CUST_ID=example@example.com&

EMAIL=example@example.com&

MOBILE_NO=999999999&

CALLBACK_URL=https://sadad.qa/callback.php&

txnDate=2021-08-30+11:43:34&

productdetail[0][order_id]=9006&

productdetail[0][itemname]=Sample Product&

productdetail[0][amount]=50&

productdetail[0][quantity]=1&

productdetail[0][type]=line_item&

checksumhash=RsvMNLuSZd7AfgWKMd3egbOWaEPze1qE8diVKl05O3s/uuPIqXu

dDASXwtry3cUkYmW4EKNAaSQx9DWG5AWpchVd25onwDAf7a5s9xp8EnI=&

card_details[payment_method]=2

Parameters that should not be included in the checksumhash

generation:

Parameter Name Description Possible Values

card_details[payment_method] The payment
method, credit or
debit

1 = Credit card
2 = Debit card

card_details[card-number] Credit card number.
Only numeric values.
Should not include
space. Not needed if
payment method is
debit card.

16 digit card
number.
Example:
4111111111111111

card_details[card-holders-
name]

The credit card
holder name.
Alphanumeric and
spaces allowed. Not
needed if payment
method is debit card.

Example:
Sadad

card_details[expiry-month] Card Expiry month
prefix with zero if less
than 10. Not needed

01,02,03,04,05,06,
07,08,09,10,11,12

mailto:CUST_ID=example@example.com&
mailto:EMAIL=example@example.com&

if payment method is
debit card.

card_details[expiry-year] Card Expiry year. Last
2 digits only. Not
needed if payment
method is debit card.

For 2021, value
must be 21. For
2022, value must
be 22.

card_details[cvc] CVV number. 3 digits
for Visa and
Mastercard. 4 Digits
for American Express.
Not needed if
payment method is
debit card.

Numeric value only.

card_details[cardType] The card scheme
type. Not needed if
payment method is
debit card.

Visa, Mastercard,
Amex, JCB,
Discover are
possible values.

card_details[saveCard] To save the card for
future use. Token
payments. Optional if
not using the
tokenization service
or payment method
is debit card.

1

card_details[user_ipAddress] The IP address of the
user.

Required
parameter and a
valid IP address of
the customer must
be passed.

Response:

{

 “status” : “success”,

 “msg” : “<html>Dynamic form to be submitted.</html>”

}

Error Response:

{

“status” : “failed”,

 “error_message” : “The error message.”

}

4. If the response status is success, the msg field will contain a form to

be submitted. The form’s name property would be echoForm for the

debit card payment method and it can be submitted via simple

Javascript function like below:

document.echoForm.submit();

Change in the credit card processing for 3DS w.e.f. 5 Oct, 2021:

If the payment method is credit card, the msg field will contain an

iframe with script. The developer must place the full content in the

webpage/webview and the rest of the part will be handled

accordingly.

The developer should bind the iFrame load event and monitor the

URL to close/hide the iframe when it hits the callback URL.

5. If the response status is failed, there will be a field present

“error_message” and the merchant can show that error to his

customer.

Callback URL Processing:

- After the payment is completed by the user (success/failed), Sadad

system will hit the callback URL with the following data as HTTP POST.

'website_ref_no' =>"",

'transaction_status' => "3",

'transaction_number' => 'SD123456789322',

'MID' => "1234567",

'RESPCODE' => "1",

'RESPMSG' => 'Txn Success',

'ORDERID' => '123456',

'STATUS' => 'TXN_SUCCESS',

'TXNAMOUNT' => "5",

'checksumhash' =>

'z1DxSMDM0KFdDNj8MFn6v3lNNbxdT9krll5FWPdIy7ZVrF06YuJmARUeD

i43uIIHOjZkwAf+MJhFmUDA+LANKb0uWjxhdpf7sgFg5g0WsjM='

- The checksumhash must be verified using the checksumverify API to

ensure the callback URL is called by Sadad system only.

- The field description for callback URL fields is given on

https://developer.sadad.qa under web checkout section.

https://developer.sadad.qa/

